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Abstract

The mathematics of "COllective INtelli-

gence" (COINs) is concerned with the de-

sign of multi-agent systems so as to optimize

an overall global utility function when those

systems lack centralized communication and

control (Jennings et al., 1998; Sen, 1997;

Sycara, 1998). Typically in COINs each

agent runs a distinct Reinforcement Learning

(RL) algorithm (Kaelbing et al., 1996; Sut-

ton & Barto, 1998; Watkins & Dayan, 1992),

so that much of the design problem reduces

to how best to initialize/update each agent's

private utility function, as far as the ensuing

value of the global utility is concerned. Tra-

ditional "team game" solutions to this prob-

lem assign to each agent the global utility as

its private utility function (Crites & Barto,

1996). In previous work we used the COIN
framework to derive the alternative "Wonder-

ful Life Utility" (WLU), and experimentally

established that having the agents use it in-

duces global utility performance up to orders

of magnitude superior to that induced by use
of the team game utility. The WLU has a

free parameter (the "clamping parameter")

which we simply set to 0 in that previous

work. Here we derive the optimal value of the

clamping parameter, and demonstrate exper-

imentally that using that optimal value can

result in significantly improved performance

over that of clamping to 0, over and above the

improvement beyond traditional approaches.

1. Introduction

In this paper we are interested in multi-agent sys-

tems (MAS's (Jennings et al., 1998; Sen, 1997; Syeara,

1998)) having the following characteristics:

• the agents each run reinforcement learning (RL) al-

gorithms;

• there is little to no centralized communication or

control;

• there is a provided world utility function that rates

the possible histories of the full system.

These kinds of problems may well be most readily

addressed by having each agent run a Reinforcement

Learning (RL) algorithm. In such a system, we are

confronted with the inverse problem of how to ini-

tialize/update the agents' individual utility functions

to ensure that the agents do not "work at cross-

purposes", so that their collective behavior maximizes
the provided global utility function. Intuitively, we

need to provide the agents with utility functions they

can learn well, while ensuring that their doing so won't

result in economics phenomena like the Tragedy of

The Commons (TOC; (Hardin, 1968)), liquidity trap

or Braess' paradox (Tumer& Wolpert, 2000)

This problem is related to work in many other fields,

including computational economics, mechanism de-

sign, reinforcement learning for adaptive control, sta-

tistical mechanics, computational ecologies, and game

theory, in particular, evolutionary game theory. How-
ever none of these fields directly addresses the inverse

problem. (This is even true for the field of mechanism

design; see (Wolpert gz Turner, 2000a) for a detailed
discussion of the relationship between these fields, in-

volving several hundred references.)

Other previous work involves MAS's where agents
use reinforcement learning (Boutilier, 1999; Claus &:

Boutilier, 1998), and/or where agents model the be-

havior of other agents (Hu & Wellman, 1998). Typ-

ically this work simply elects to provide each agent
with the global utility function as its private utility
function, in a so-called "exact potential" or "team"

game. Unfortunately, as expounded below, this can

result in very poor global performance in large prob-
lems. Intuitively, the difficulty is that each agent can

have a hard time discerning the echo of its behavior

on the global utility when the system is large.



In previousworkweusedtheCOINframeworkto de-
rive thealternative"WonderfulLifeUtility" (WLU)
(Wolpert_ Turner, 2000a), a utility that generically

avoids the pitfalls of the team game utility. In some
of that work we used the WLU for distributed con-

trol of network packet routing (Wolpert et al., 1999a).

Conventional approaches to packet routing have each

router run a shortest path algorithm (SPA), i.e., each

router routes its packets in the way that it expects will

get those packets to their destinations most quickly.
Unlike with a COIN, with SPA-based routing the

routers have no concern for the possible deleterious

side-effects of their routing decisions on the global goal

(e.g., they have no concern for whether they induce
bottlenecks). Vte ran simulations that demonstrated

that a COIN-based routing system has substantially

better throughputs than does the best possible SPA-

based system (Wolpert et al., 1999a), even though that

SPA-based system has information denied the COIN

system. In related work we have shown that use of the
WLU automatically avoids the infamous Braess' para-

dox, in which adding new links can actually decrease

throughput -- a situation that readily ensnares SPA's.

Finally, in (Wolpert et al., 1999b) we considered the

pared-down problem domain of a congestion game, in

particular a more challenging variant of Arthur's El
Farol bar attendance problem (Arthur, 1994), some-

times also known as the "minority game" (Challet &

Zhang, 1998). In this problem, agents have to deter-

mine which night in the week to attend a bar. The

problem is set up so that if either too few people attend

(boring evening) or too many people attend (crowded

evening), the total enjoyment of the attendees drops.

Our goal is to design the reward functions of the at-
tendees so that the total enjoyment across all nights is

maximized. In this previous work of ours we showed

that use of the WLU can result in performance orders

of magnitude superior to that of team game utilities.

The WLU has a free parameter (the "clamping pa-

rameter"), which we simply set to 0 in our previous
work. To determine the optimal value of that pa-

rameter we must employ some of the mathematics of

COINs, whose relevant concepts we review in the next
section. We next use those concepts to sketch the cal-

culation deriving the optimal clamping parameter. To

facilitate comparison with previous work, we chose to
conduct our experimental investigations of the perfor-

mance with this optimal clamping parameter in varia-

tions of the Bar Prohlem. We present those variations

in Section 3. Finally we present the results of the

experiments in Section 4. Those results corroborate

the predicted improvement in performance when using
our theoretically derived clamping parameter. This

extends the superiority of the COIN-based approach

above conventional team-game approaches even fur-

ther than had been done previously.

2. Theory of COINs

In this section we summarize that part of the theory

of COINs presented in (Wolpert et al., 1999a; Wolpert

&Tumer, 2000a; Wolpert et al., 1999b) that is rele-

vant to the study in this article. We consider the state

of the system across a set of consecutive time steps,

t E (0, 1.... }. Without loss of generality, all relevant
characteristics of agent r/at time t -- including its in-

ternal parameters at that time as well as its externally

visible actions -- are encapsulated by a Euclidean vec-

tor -_n.t' the state of agent q at time t. _',t is the set of

the states of all agents at t, and _ is system's worldline,
i.e., the state of all agents across all time.

World utility is G(_), and when r/ is an ML algo-
rithm "striving to increase" its private utility, we

write that utility as 7o(__). (The mathematics can
readily be generalized beyond such ML-based agents;

see (Wolpert & Tumer, 2000b) for details.) Here we

restrict attention to utilities of the form _"_t Rt(_t) for

reward functions Rt.

We are interested in systems whose dynamics is deter-

ministic. (This covers in particular any system run on
a digital computer, even one using a pseudo-random

number generator to generate apparent stochasticity.)

We indicate that dynamics by writing _ = C(_o). So

all characteristics of an agent q at t = 0 that affects the

ensuing dynamics of the system, including its private

utility, must be included in -_,,0

Definition: A system is factored if for each agent r/

individually,

%(C(_,o)) _>%(C(._:o)) _ G(C(_'o)) _> G(C(_",o)),

for all pairs _,0 and _',o that differ only for node r/.

For a factored system, the side effects of changes to

r/'s t = 0 state that increase its private utility cannot
decrease world utility. If the separate agents have high

values of their private utilities, by luck or by design,

then they have not frustrated each other, as far as G is

concerned. (We arbitarily phrase this paper in terms

of changes at time O; the formalism is easily extended

to deal with arbitrary times.)

The definition of factored is carefully crafted. In par-

ticular, it does not concern changes in the value of the

utility of agents other than the one whose state is var-
ied. Nor does it concern changes to the states of more



thanoneagentat once,Indeed,considerthefollowing
alternativedesideratumto havingthesystembefac-

tored: any change to _,0 that simultaneously improves
the ensuing values of all the agents' utilities must also

improve world utility. Although it seems quite rea-

sonable, there are systems that obey this desideratum

and yet quickly evolve to a mimmum of world utility

((Wolpert etal., 1999b)).

For a factored system, when every agents' private util-

ity is optimized (given the other agents' behavior),

world utility is at a critical point (Wolpert & Tumer,

2000a). In game-theoretic terms, optimal global be-

havior occurs when the agents' are at a private utility

Nash equilibrium (Yhdenberg & Tirole, 1991). Accord-

ingly, there can be no TOC for a factored system.

As a trivial example, if 7. = G Vrh then the system is
factored, regardless of C. However there exist other,

often preferable sets of {7. }, as we now discuss.

Definition: The (t = 0) effect set of node r/ at _,

Cg/!(_), is the set of all components _.',t' for which

the gradients _¢ o(C(__0)),,,t, _ {_. C_ ]! with no

specification of _ is defined as U___cC_!!(__).

Intuitively, the effect set of r} is the set of all node-time

pairs affected by changes to q's t = 0 state.

Definition: Let a be a set of agent-time pairs.

CL_((_) is _ modified by "clamping" the states cor-
responding to all elements of _r to some arbitrary pre-
fixed value, here taken to be 0. The wonderful life

utility (WLU) for cr at _( is defined as:

WLUa(_.) -- G((_.) - G(CL_(_)). (1)

In particular, the WLU for the effect set of node q is

a(O - G(CLc;- (_)).

A node rfs effect set WLU is analogous to the change

world utility would undergo had node 17 "never ex-

isted". (Hence the name of this utility - cf. the Frank

Capra movie.) However CL(.) is a purely "fictional",

counter-factual mapping, in that it produces a new
without taking into account the system's dynamics.
The sequence of states produced by the clamping op-
eration in the definition of the WLU need not be con-

sistent with the dynamical laws embodied in C. This

isa crucialstrength of effectset WLU. Itmeans that

to evaluate that WLU we do not try to inferhow the

system would have evolved ifnode r/'sstate were set

to (_at time 0 and the system re-evolved.So long as

we know G and the full_, and can accurately esti-

mate what agent-time pairs comprise C_ !I, we know

the value of T/'seffectset WLU _ even ifwe know

nothing of the details of the dynamics of the system.

Theorem 1: A COIN is factored ifT. = WLUc;H V_7

(proof in (Wolpert & Tumer. 2000a)).

If our system is factored with respect tosome {7.},

then each _.,0 should be in a state with as high a

value of 7.(C(_(0)) as possible. So for such systems,

our problem is determining what {7.} the agents will

best be able to maximize while also causing dynamics

that is factored with respect to those {7.}.

Now regardless of C(.), both 7. = G Vr] and 7. =

WLUc_zt VrI are factored systems. However since each
agent is operating in a large system, it may experi-

ence difficulty discerning the effects of its actions on G

when G sensitively depends on all components of the

system. Therefore each rI may have difficulty learning

how to achieve high 7. when 7. = G. This problem

can be obviated by using effect set WLU, since the

subtraction of the clamped term removes some of the

"noise" of the activity of other agents, leaving only the

underlying "signal" of how agent q affects its utility.

We can quantify this signal/noise effect by comparing

the ramifications on the private utilities arising from

changes to -(.,0 with the ramifications arising from

changes to [-.,0' where _ represents all nodes other
than q. We call this quantification the learnability

of those utilities at the point _( = C((.'mo ) (Wolpert &
Tumer, 2000a). A linear approximation to the learn-

ability in the vicinity of the worldline __ is the differ-

ential learnability A,,_. (_):

IIv__,o7.(c(¢" o))It
_.,_.(¢) - . (2)

- iiV%.o_,,(c(__.o))lI

Differential learnability captures the signal-to-noise

advantage of the WLU in the following theorem:

Theorem 2: Let a be a set containing C_ I1. Then

A.,w_.u.(g.) IIV.%,oG(C(g.,o))

_.,a(_) = II_.,oa(C(;,o))- _;.oa(CL.(C(fo)))ll

(proof in (Wolpert &Tumer, 2000a)). This ratio of

gradients should be large whenever a is a small par_
of the system, so that the clamping won't affect G's

dependence on q"_,0 much, and therefore that depen-
dence will approximately cancel in the denominator
term. In such cases, WLU is factored, just as G is,



but far morelearnable.The experimentspresented
belowillustratethepowerofthis factin thecontextof
the barproblem,whereonecanreadilyapproximate
effectsetWLU andthereforeusea utility for which
the conditions in Thm.'s I and 2 should hold.

3. The Bar Problem

Arthur's bar problem (Arthur, 1994) can be viewed

as a problem in designing COINs. Loosely speak-

ing, in this problem at each time t each agent r/ de-

cides whether to attend a bar by predicting, based on

its previous experience, whether the bar will be too

crowded to be "rewarding" at that time, as quanti-

fied by a reward function RG. The greedy nature of

the agents frustrates the global goal of maximizing RG

at t. This is because if most agents think the atten-

dance will be low (and therefore choose to attend), the

attendance will actually be high, and vice-versa. We

modified Arthur's original problem to be more general,

and since we are not interested here in directly com-

paring our results to those in (Arthur, 1994; Challet

_: Zhang, 1998), we use a more conventional ML al-

gorithm than the ones investigated in (Arthur, 1994;
Caldarelli et el., 1997; Challet & Zhang, 1998).

There are N agents, each picking one of seven nights

to attend a bar in a particular week, a process that is

then repeated for the following weeks. In each week,

each agent's pick is determined by its predictions of
the associated rewards it would receive if it made that

pick. Each such prediction in turn is based solely upon
the rewards received by the agent in those preceding

weeks in which it made that pick.

The world utility is G(_() = _-_tRG(_(,t), where

RG((_.,t) -- _-,_=i (b(xk((_,t)), xa(_.,t) is the total at-

tendance on night k at week t, ¢?(y) =- yexp (-y/c);
and c is a real-valued parameter. Our choice of _b(.)

means that when too few agents attend some night in

some week, the bar suffers from lack of activity and

therefore the world reward is low. Conversely, when

there are too many agents the bar is overcrowded and

the reward is again low.

Since we are concentrating on the choice of utilities

rather than the RL algorithms that use them, we
use simple RL algorithms. Each agent r/ has a 7-

dimensional vector representing its estimate of the re-

ward it would receive for attending each night of the

week. At the beginning of each week, to trade off

exploration and exploitation, 77picks the night to at-

tend randomly using a Boltzmann distribution over

the seven components of rfs estimated rewards vec-

tor. For simplicity, temperature did not decay in time.

However to reflect the fact that each agent perceives

art environment that is changing in time, the reward

estimates were formed using exponentially aged data:

in any week t, the estimate agent r/ makes for the re-
ward for attending night i is a weighted average of all

the rewards it has previously received when it attended

that night, with the weights given by an exponential

function of how long ago each such reward was.

To form the agents' initial training set, we had an ini-

tial training period in which all actions by all agents

were chosen uniformly randomly, and the associated

rewards recorded by all agents. After this period, the
Boltzmann scheme outlined above was "turned on".

This simple RL algorithm works with rewards rather

than full-blown utilities. So formally speaking, to ap-

ply the COIN framework to it it is necessary to extend
that framework to encompass rewards in addition to

utilities, and in particular to concern effect set won-

derful life reward (WLR), whose value at moment t

for agent r/is RG(_,,) - RG(CLc_sI(_,t)). To do this
one uses Thm. 1 to prove that, under some mild as-

sumptions, if we have a set of private rewards that are

factored with respect to world rewards, then maximiz-

ing those private rewards also maximizes the full world

utility. In terms of game theory, a Nash equilibrium

of the single-stage game induces a maximum of the

world utility defined over the entire multi-stage game.

(Intuitively, this follows from the fact that the world

utility is a sum of the world rewards.) In addition,
one can show that the WLR is factored with respect

to the world reward, and that it has the same advan-

tageous learnability characteristics that accrue to the

WLU. Accordingly, just as the COIN framework rec-
ommend we use WLU when dealing with utility-based

RL algorithms, it recommends that we use WLR in

the bar problem when dealing with reward-based RL

algorithms. See (Wolpert _z Tumer, 2000b).

Example: It is worth illustrating how the WLR is fac-

tored with respect to the world reward in the context

of the bar problem. Say we're comparing the action

of some particular agent going on night 1 versus that

agent going on night 2, in some pre-fixed week. Let x_

and x_ be the total attendances of everybody but our
agent, on nights 1 and 2 of that week, respectively. So

WLR(1), the WLR value for the agent attending night

1, is given by O(x_ + 1) - O(x' t + CLt) + ¢P(x'2) - ¢(x'2 +

CL.2) + _)'_i>.2[_(xi) - 0(x_ + CLi)], where "eLi" is
the i'th component of our clamped vector. Similarly,

W LR(2) = ¢;(x_ ) - ¢_(x't + CLt) + ¢)(x'2 + 1) - _(z_ +

CL2) + _{>2[O(x_) - ¢_(x_ + C L_)].

Combining, sgn(WLR(l) - WLR(2)) = sgn(dz(z_ +



[) - 0(._'l) - O(x,_ + l) + ¢(x!,)). Or, the other hand,

Re(i), the G value for the agent attending night l,

is _(x' t + l) + _(x._) + _7":_,>2_(x,). Similarly, Re(2) is

rp(x'L) +_(x. _ + l)+ _-_,>._ O(x,). Therefore sgn(Rc(l)-
= . .qn(o(z't+ 1) + - + L)- ¢(xl)).

So sgn(WLR(l) - WLR(2) = sgn(Rc(I) - Ra(2)).
This is true for any pair of nights, and any attendances

{xi}, and any clamping vector. This establishes the
claim that WLR is factored with respect to the world

reward, for the bar problem.

When using the WLR we are faced with the question

of setting the clamping parameter, i.e., of determining

the best values to which to clamp the components C_ I!

of_. One way to do this is to solve for those values that
maximize differential learnability. An approximation

to this calculation is to solve for the clamping parame-

ter that minimizes the expected value of [A_,WLR,] -2,

where the expectation is over the values -_,t and asso-

ciated rewards making up rfs training set.

A number of approximations have to be made to carry
out this calculation. The final result is that r/should

clamp to its (appropriately data-aged) empirical ex-

pected average action, where that average is over the

elements in its training set (Wolpert &Tumer, 2000b).

Here, for simplicity, we ignore the data-aging stipu-
lation of this result. Also for simplicity, we do not

actually make sure to clamp each r/ separately to its

own average action, a process that involves r/modify-

ing what it clamps to in an online manner. Rather we

choose to clamp all agents to the same vector, where

that vector is an initial guess as to what the average

action of a typical agent will be. Here, where the ini-

tial training period has each agent choose its action

uniformly randomly, that guess is just the uniform av-

erage of all actions. The experiments recounted in the
next section illustrate that even using these approx-

imations, performance with the associated clamping

parameter is superior to that of using the WL reward
with clamping to (_, which in turn exhibits performance

significantly superior to use of team game rewards.

4. Experiments

4.1 Single Night Attendance

Our initial experiments compared three choices of the

clamping parameter: Clamping to "zero" i.e., the ac-

tion vector given by 0 = (0, 0, 0, 0, 0, 0, 0), as in our

original work; clamping to "ones" i.e., the action vec-

tor f = (1, 1, 1, 1, 1, 1, 1); and clamping to the (ideal)
"average" action vector for the agents after the initial

training period, denoted by _. Intuitively, the first

clamping is equivalent to the agent "staying at home,"

while the second option corresponds to the agent at-

tending every night. The third option is equivalent

to the agents attending partially on all nights in pro-

portions equivalent to the overall attendance profile of

all agents across the initial training period. (If taken,
this "action" would violate the dynamics of the sys-

tem, but because it is a fictional action as described in

Section 2, it is consistent with COIN theory.)

In order to distinguish among the different clamping

operators, we will include the action vector to which

the agents are damped as a subscript (e.g., CL 6 will

denote the operation where the action is clamped to

the zero vector). Because all agents have the same

reward function in the experiments reported here, we

will drop the agent subscript from the reward function.

We compared performance with these three WLR's

and the team game reward, RG. Writing them out,

those three WLR reward functions are:

RWL_(__,t) -- RG(__t)- Ra(CL_(_,t))

= Od,(Xd,(_,t)) -- 4_d,(Xd,(__,t) -- 1)

7

= t)) - t) + l)
dCd_

RG(CL,T(_,t))

7

= t)) -- t) + ad)
d_d,

+ Od.(Xd.(_,t)) -- Va.(x_.(__,t) -- 1 +ad)

where dn is the night picked by r], and ad is the com-

ponent of ff corresponding to night d.

The team game reward, RG, results in the system

meeting the desideratum of factoredness. However, be-
cause of Theorem 2, we expect Ra to have poor learn-

ability, particularly in comparison to that of RwLa;

(see (Wolpert & Turner, 2000a) for details). Note that

to evaluate RWLa each agent only needs to know the
total attendance on the night it attended. In contrast,

RG and RwLs require centralized communication con-

cerning all 7 nights, and RWL r requires communica-
tion concerning 6 nights.

Figure 1 graphs world reward against time, averaged
over 100 runs, for 60 agents and c = 3. (Throughout

this paper, error bars are too small to depict.) The two

straight lines correspond to the optimal performance,
and the "baseline" performance given by uniform oc-

cupancies across all nights. Systems using WL_ and
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Figure I. Reward function comparison when agents attend
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WL 6 rapidly converged to optimal and to quite good

performance, respectively. This indicates that for the

bar problem the "mild assumptions" mentioned above

hold, and that the approximations in the derivation of

the optimal clamping parameter are valid.

In agreement with our previous results, use of the re-

ward Re, converged very poorly in spite of its being

factored. The same was true for the WLf reward. This

behavior highlights the subtle interaction between fac-

toredness and learnability. Because the signal-to-noise

was higher for these reward functions, it was very dif-

ficult for individual agents to determine what actions

would improve their private utilities and therefore had

difficulties in finding good solutions.
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Figure2.Scalingpropertiesofthe differentreward func-

tion.(WL& is 0 ; WL_ is + ; WLf is 0 ; G is x)

Figure 2 shows how t = 500 performance scaleswith

N foreach of the reward signals.For comparison pur-

poses the performance isnormalized -- foreach utility

U we plot _, where R_ and /_ome are the
_olPl _ g%i,,,

optimal performance and a canonical baselineperfor-

mance given by uniform attendance across all nights,

respectively. Systems using RG perform adequately

when N is low. As N increases however, it becomes

increasinglydifficultfor the agents to extract the in-

formation they need from Re;. Because of theirsupe-

riorlearnability,systems using the WL rewards over-

come this signal-to-noiseproblem to a great extent.

Because the WL rewards are based on the dzfference

between the actualstateand the statewhere one agent

isclamped, they are much lessaffectedby the total

number ofagents.However, the actionvectorto which

agents are clamped also affectsthe scalingproperties.

4.2 Multiple Night Attendance

In order to study the relationship between the clamp-

ing parameter and the resulting world utility in more

detail, we now modify the bar problem as follows:

Each week, each agents picks three nights to attend

the bar. So each of the seven possible actions now cor-

responds to a different attendance pattern. (Keeping
the number of candidate actions at 7 ensures that the

complexity of the RL problem faced by the agents is

roughly the same.) Here those seven attendance pro-

files were attending the first three nights, attending

nights 2 through 4, ..., attending on nights 7, 1 and 2.

Figure 3 shows world reward value as a function of

time for this problem, averaged over 100 runs, for all

four reward functions. For these simulations c = 8,

and there were 60 agents. Optimal and baseline per-

formance are plotted as straight lines. Note that in the

experiments of the previous section CL _ clamps to the
:

attendance vector v with components vi = _d=l _7 '

where _d,i is the Kronecker delta function. Now how-

v __, is the i'thever it clamps to vi = _-']_a=l where ua,i
component (0 or 1) of the the d'th action vector, so
that for each d it contains three l's and four O's.
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Figure 3. Reward function comparison when agents attend

three nights. (WL# is O ; WL_ is + ; WL r is C] ; G is ×)

As inthe previouscase,the reward obtained by clamp-

ing to the average action Rwt, e performs near opti-

mally. RWLa on the other hand shows a slightdrop-



off cornpar_(l to the previous problem. RwLr now

performs almost as well as RWL#. All three WL re-
wards still significantly outperform the team game re-

ward. What is noticeable though is that as the number

of nights to attend increases, the difference between

RWL_ and RwL r decreases, illustrating how changing
the problem can change the relative performances of
the various WL rewards.

4.3 Sensitivity to Clamping

The results of the previous section shows that the ac-

tion vector to which agents clamp has a considerable

impact on the global performance. In this section we

study how that dependence varies with changes in the

problem formulation.

We considered four additional variants of the bar prob-

lem just like the one described in the previous sub-

section, only with four new values for the number of

nights each agent attends. As in the previous sec-

tion, we keep the number of actions at seven and map

those actions to correspond to attending particular
sets of nights. Also as in the previous section, we

choose the attendance profiles of each potential action

so that when the actions are selected uniformly the

resultant attendance profile is also uniform. We also

modify c to keep the "congestion" level of the prob-
lem at a level similar to the original problem. (For

the number of nights attended going from one to six,

c = {3, 6, 8, 10, 12, 15} respectively.)
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Figure 4. Behavior of different reward function with re-
spect to number of nights to attend. (WLa is 0 ; WL_
is + ; W L _ is 0 ; G is x)

Figure 4 shows the normalized world reward obtained
for the different rewards as a function of the number of

nights each agent attends. Rwt,, performs well across

the set of problems. RwL r on the other hand performs
poorly when agents only attend on a few nights, but

reaches the performance of Rwt,, when agent need to
select six nights, a situation where the two clamped ac-

tion vectors are very similar. RWL a shows a slight drop
in performance when the number of nights to attend

increases, while Rc shows a much more pronounced

drop. These results reinforce the conclusion obtained

in the previous section that the clamped action vector

Chat best matches the aggregate empirical attendance
profile results in best performance

4.4 Sensitivity to Parameter Selection

The final aspect of these reward functions we study is

the sensitivity of the associated performance to the in-

ternal parameters of the learning algorithms. Figure 5

illustrates experiments in the original bar problem pre-

sented in Figures 1 and 2, onl for a set of different

temperatures in the Boltzamnn distribution. RWL,

is fairly insensitive to the temperature, until it is so

high that agents' actions are chosen almost randomly.

RwL_ depends more than RWL_ does on having suf-
ficient exploration and therefore has a narrower range

of good temperatures. Both RWLr and RG have more
serious learnability problems, and therefore have shal-

lower and thinner performance graphs.
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Figure 5. Sensitivity of reward functions to internal param-
eters. (WLa isO; WL_is+ ; WLfis D ;Gis x)

5. Conclusion

In this article we consider how to configure large multi-

agent systems where each agent uses reinforcement

learning. To that end we summarize relevant aspects

of COIN theory, focussing on how to initialize/update

the agents' private utility functions so that their col-
lective behavior optimizes a global utility function.

In traditional "team game" solutions to this problem,

which assign to each agent the global utility as its pri-

vate utility function, each agent has difficulty discern-

Lug the effects of its actions on its own utility function.
We confirmed earlier results that if the agents use the

alternative "Wonderful Life Utility" with clamping to



(_, the system converges to significantly superior world

reward values than do that associated team game sys-
tems. We then demonstrated that this wonderful life

utility also results in faster convergence, better scal-

ing, and less sensitivity to parameters of the agents'

learning algorithms. We also showed that optimally

choosing the action to which agents clamp (rather

than arbitrarily choosing 1_) provides significant fur-

ther gains in performance, according to all of these

performance measures. Future work involves investi-

gating various ways of having the agents determine

their optimal clamping vectors dynamically.
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